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ABSTRACT

The goal of this thesis is to investigate vortex dynamics of a plunging airfoil by

studying the vorticity transport mechanisms of two-dimensional simulations. Direct

numerical simulations were implemented in an e↵ort to provide detailed flow fields

that are di�cult to capture with experimental methods. The simulations were used to

study a simplified flat airfoil in a freestream that was subject to pure plunging motion.

Due to computational limits, it was not practical to simulate in three-dimensions

and the results are limited to two-dimensions. Quantitative and qualitative analyses

were used the validate the two-dimensional simulations and gain insight into the

e↵ects of eliminating three-dimensional physics in a nominally two-dimensional flow.

Additionally, a parametric study was conducted to analyze the e↵ects of Reynolds

and Strouhal numbers on the transport of vorticity.
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PUBLIC ABSTRACT

This thesis investigates vortex dynamics of a plunging airfoil by studying the

vorticity transport mechanisms of two-dimensional direct numerical simulations. The

simulations were used to study a simplified flat airfoil in a freestream that was subject

to pure plunging motion. Quantitative and qualitative analyses were used the validate

the two-dimensional simulations and gain insight into the e↵ects of eliminating three-

dimensional physics in a nominally two-dimensional flow. Additionally, a parametric

study was conducted to analyze the e↵ects of Reynolds and Strouhal numbers on the

transport of vorticity.
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1

CHAPTER 1
INTRODUCTION

1.1 Motivation

The study of vortex dynamics is a highly complex and active sub-field of

fluid mechanics that is relevant to many engineering applications as well as biological

motion. Interactions of vortices with surfaces and other vortices produces complex

flow patterns and unsteady aerodynamic forces. Impacts of these vortex interactions

can be beneficial to an airfoil (e.g. lift generating) or disadvantageous (e.g. inducing

flutter). Significant e↵orts have been made to study these vortex interactions in an

e↵ort to understand the correlation between vortex dynamics and airfoil parameters,

such as the e↵ects of cross-sectional shape and kinematic motion [11, 30, 12, 13].

Biological creatures that propel themselves through flapping and swimming have been

sources of inspiration for many studies characterizing the physical mechanisms of lift

and thrust generation [21, 28, 34]. Despite these, and numerous more examples of

published research, the underlying physics of vortex dynamics are not completely

understood.

Recent research has provided new insight into one area of vortex dynamics,

the physics governing the growth and evolution of leading-edge vortices. The work

conducted by Wojcik and Buchholz [35] studied the leading-edge vortex (LEV) of a

rotating blade, and analysis showed that vortex strength could be perpetually regu-

lated on a vortex stably attached to the blade by vorticity annihilation mechanisms.
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The resulting mechanisms were found to be important sources for regulating the sta-

bility of an LEV. Similarly, Eslam Panah and Buchholz [7] investigated the LEV

and trailing-edge vortex (TEV) developments of a plunging airfoil. This work was

advanced in Eslam Panah et al. [22] by analyzing the fluxes of vorticity to quan-

titatively measure the sources and sinks of vorticity. The results of [22] found that

the entrainment of secondary vorticity from the surface of the airfoil was an impor-

tant mechanism for determining the strength and stability of a LEV. These projects

have provided compelling developments into the current understanding of unsteady

aerodynamics and form the basis for the work in this thesis.

While the research discussed to this point has predominantly been conducted

using experimental methods, several simulations of vortex dynamics have been con-

ducted using numerical methods. For example, Lewin and Haj-Hariri [12] conducted

two-dimensional simulations of heaving airfoils to characterize the flow and thrust

generation at low Reynolds numbers. Specific to the formation of LEVs, Visbal

(2009) [33] implemented large eddy simulations (LES) to study the entrainment of

vorticity into an LEV. The results of these, and other, numerical simulations have

provided detailed insight into vortex dynamics that would be di�cult to fully capture

using experimental techniques such as particle image velocimetry (PIV). For exam-

ple, detailed surface pressures and stress distributions obtained from simulations can

help elucidate mechanisms of lift, thrust, and vorticity production. Therefore, nu-

merical simulations will play an important role into the continued research of vortex

dynamics.
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As with all engineering problems, assessing the assumptions and simplifica-

tions of physical phenomena is critical to determining the accuracy of the problem’s

solution. When implementing numerical simulations with turbulence models, the

simulation’s solutions are dependent upon the accuracy of the turbulence model rep-

resenting the true physical nature of the flow. Specifically, for LES simulations, the

large eddies in a flow are solved for directly, but a subgrid-scale (SGS) model is used

to approximate the small scale structures. For research into the complex interactions

of small scale eddies and their e↵ects on LEVs, similar to the work of Eslam Panah

et al. [22], SGS models can introduce assumptions that do not necessarily model the

physical phenomena, especially for transitional flows such as those associated with

biological flapping flight. This is partly due to the fact that the physical phenom-

ena is not well understood. Therefore, for research involving the study of small scale

structures in LEV formation, the use of direct numerical simulations (DNS) is desired;

where all spatial and temporal scales are solved for without introducing a turbulence

model. During the author’s literature review, no existing studies were found that

performed DNS simulations on LEV formation of a plunging airfoil within the tran-

sitional flow regime. The main reason for this lack of research is due to the expensive

computational requirements needed to simulate the flow using DNS. Advances in

CFD methods have made it possible to implement DNS codes for higher Reynolds

number flows; the implementation of adaptive grids, e�cient numerical schemes, and

parallel processing are some of these advancements. Therefore, a goal of this work

was to develop a framework for implementing DNS simulations to further the study of
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LEV stability in the transitional regime. Due to the computational expense of these

simulations, only two-dimensional simulations were performed. However, since pub-

lished experimental data are available for the exact same problem (necessarily with

fully three-dimensional physics), this work also constitutes a detailed investigation

into the role of three-dimensional flow physics on vortex evolution and transport in

a nominally two-dimensional flow.

1.2 Literature Review

1.2.1 LEV Importance

LEVs are an active area of interest due to their ubiquity and ability to produce

large lift forces. As will be discussed in the following sections, an accumulation

of vorticity results in concentrated areas of high kinetic energy that produces low

pressure regions along the surface of the airfoil facing the LEV [23]. The resulting

low pressure regions induce lift forces not seen in steady aerodynamics. Therefore,

advancing the study of unsteady aerodynamics requires a thorough understanding of

the formation and evolution of LEVs.

1.2.2 LEV Formation

As previously stated, LEVs form at the leading-edge of an airfoil. But LEVs

do not appear spontaneously; initially the region around the airfoil is an attached

boundary layer. Due to the induced flow dynamics, e.g. from a plunging or rotating

airfoil, an adverse pressure gradient (APG) will develop on the airfoil’s surface [5].

When a significantly large APG develops, vorticity will be ejected from the bound-
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ary layer which results in the in the roll-up and separation of the boundary layer

from the surface [5, 32]. After its initial formation, it is important that an LEV

remain connected to the boundary layer through a flux of vorticity from the leading

edge’s shear layer. This flux of shear layer vorticity acts to increase the circulation

of the LEV which results in increased strength and interactions from the LEV with

its surrounding surfaces and vortices. Surfaces near the LEV will develop pressure

gradients along the surface due to the no-slip condition that results in the generation

of opposite-signed vorticity (secondary vorticity) to the LEV [5, 8]. As the motion

of the airfoil continues, the LEV will become detached [5, 26]. Recent studies have

demonstrated that entrainment of opposite-signed vorticity into LEVs is an important

mechanism for detachment [12, 33, 35]. It is further suggested that the entrainment

of secondary vorticity is important to gradually annihilating the shear layer vorticity

flux [22].

1.2.3 LEV Evolution

After the formation and detachment of an LEV, the vortex still interacts with

the airfoil and continues to induce aerodynamic forces. The magnitude of this e↵ect

is dependent on the proximity of the LEV to the airfoil’s surface [4]. Further studies

have been conducted on how to maximize the e↵ects of an LEV, with the overall goal

of stabilizing it and o↵setting detachment. Jones and Babinsky [9] performed analysis

on the dependence of Reynolds number to the formation of an LEV. From their study

it was determined that the Reynolds number had little e↵ect on the magnitude of the
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detachment circulation and flow structures that resulted in the formation of an LEV.

The results of [9] did show that increasing Reynolds numbers between 10,000 and

60,000 of a waving flat wing did e↵ect the rate at which circulation was produced,

where an increased Reynolds number resulted in a decreased rate of non-dimensional

circulation production, which resulted in an increased duration that the LEV would

stay attached. Similarly, Rival et al. [25] varied plunging motions of an airfoil to

determine the e↵ects of varying plunging velocity during a cycle. The results of [25]

showed that the peak strength of the LEV could be increased by e↵ectively delaying

the maximum angle of attack. Furthermore, several studies have shown that the

combination of plunging and pitching motions can result in increased performance

when compared to a purely plunging airfoil [16, 31]. By combining plunging and

pitching motion, the e↵ective angle of attack is changed which appears to be the

main parameter governing the evolution of an LEV.

Three-dimensional e↵ects on the formation of a LEV have been a recent area

of study. The interest of spanwise transport mechanisms altering the circulation of a

LEV stem from the study of delta wings and rotating airfoils. In delta wings, spanwise

flow results from the wing’s swept nature and contributes to stabilization of an LEV by

transporting vorticity from the LEV along the span [15, 24]. Several theories into the

stability of LEVs on rotating blades have been hypothesized, including: spanwise flow

(similar to transport mechanism of a delta wing) [6], downwash from tip vortices [2,

27], and secondary vorticity annihilating the vorticity of an LEV [35]. As previously

stated, the results in [35] indicate that the entrainment of secondary vorticity and the
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resulting annihilation of the primary vorticity are the main mechanisms for regulating

LEV vorticity. For plunging airfoil, Eslam Panah et al. [22] applied the methods of

Wojcik and Buchholz [35] and showed that three-dimensional fluxes of vorticity, on

a nominally two-dimensional airfoil, are minimal when compared to the di↵usion of

vorticity from the airfoil’s surface. Therefore, the current research indicates that for

a nominally two-dimensional airfoil, three-dimensional e↵ects are minimal and that

the stability of a LEV is instead dominated by the transport of vorticity from the

leading edge shear layer and the opposite signed vorticity generated as a result of the

interactions of the LEV with the airfoil’s surface.

1.2.4 Experimental Setup

The work of Eslam Panah et al. [22] and Akkala [1] were used as the sources for

defining the simulation domain and kinematics. The experimental setup consisted of a

water channel with a test section width of 0.61 m and a water depth of 0.33 m (Figure

[22]). An aluminum airfoil with chord length of 76 mm, thickness of 3 mm, and span

of 304.8 mm was used in the study to provide a nominally two-dimensional flow. To

further limit the flow to two-dimensions, the freestream surface was constrained 0.6 m

upstream and downstream of the airfoil by free-surface skimmer plates composed of

rigid flat plates. Sinusoidal plunging motion of the airfoil was controlled by a 24 VDC

servo motor and Advanced Motion Control amplifier (model BE12A6J) mated to a

scotch yoke mechanism. Data collection was performed with two-component digital

PIV.
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Figure 1.1: Experimental setup for the nominally two-dimensional flow. Adopted

from Eslam Panah et al. [22].

1.3 Thesis Objectives and Overview

1.3.1 Objective

As seen in Section 1.1, vortex dynamics are an active field of research. The

work of Wojcik and Buchholz [35], Eslam Panah [7], and Akkala [1] have provided

a framework for advancing the understanding of vortex dynamics associated with

unsteady airfoils. The primary goal of this work is to advance the tools available for

analyzing LEV stability and explore the consequences of ignoring three-dimensional

e↵ects. Whereas the work of Wojcik, Eslam Panaet, and Akkala were conducted

experimentally, this work developed and used a framework for investigating plunging

airfoils using DNS simulations. The simulations were validated using the experimental

data and the vorticty flux analysis of Eslam Panah et al. [22], which was adapted for
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the use with the simulation results. Lastly, a parametric study was conducted using

two-dimensional DNS simulations to summarize the e↵ects on the stability of an LEV

by varying the Reynolds and Strouhal numbers.

1.3.2 Overview

Chapter 2 provides an introduction to the methods used in studying the plung-

ing airfoil. An overview of the simulation domain is given along with describing the

kinematics of the airfoil’s motion. A summary of the numerical methods used in the

DNS flow solver with moving boundaries is given. Lastly in Chapter 2, an explanation

of the the vorticity flux analysis is given along with an explanation for its adaptation

to the simulation data.

Chapter 3 describes the simulations’ results and discusses the analysis per-

formed on the simulations. Validations were conducted using qualitative comparison

of the LEV evolution and quantitative measures of the airfoil forces and analyses

of the vorticity fluxes. Last in Chapter 3, the results of the parametric study are

discussed. Chapter 4 summarizes this work’s findings and discusses future work that

would further advance the understanding of LEV stability.
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CHAPTER 2
METHODOLOGY

2.1 Domain Definition

The work conducted by Akkala [1] was used for validation and also formed the

basis for defining the airfoil dimensions used in the simulations. The experimental air-

foil consisted of a flat plate with rounded leading and trailing edges. Figure 2.1 shows

the profile of the airfoil. The following dimensions were used for the experimental

work: chord length (c) of 76.2mm and thickness (t) of 3.175mm.

Figure 2.1: Simplfied airfoil shape.

2.1.1 Simulation Domain

Because the numerical methods of the flow solver work best with values close

to unity, the experimental domain was translated into non-dimensional form using the

chord length as the characteristic length. Therefore, the non-dimensional simulation

chord length (c⇤) was equal to unity and the non-dimensional thickness (t⇤) was

3.175
76.2 ⇡ 0.0417.

A rectangular domain (Figure 2.2) was used for the simulations; the airfoil
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was positioned su�ciently away from the boundaries so that vortex interactions with

the boundaries did not generate misleading results. The non-dimensional length and

height dimensions of the domain were 9⇥ 6. For the 2D simulations, the free-stream

flow went from left to right along the x-axis, while the vertical plunging motion

was perpendicular to the free-stream along the y-axis. The inlet was three non-

dimensional chord lengths upstream of the airfoil’s leading edge and the outlet was five

non-dimensional chord lengths downstream of the airfoil’s trailing edge. The airfoil

chord line was three non-dimensional chord lengths above and below the bottom and

top boundaries while the airfoil was stationary.

Figure 2.2: Simulation domain, showing the overall dimensions and the placement of

the airfoil.
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The flow solver uses an adaptive grid, where the mesh is refined every iteration

based on the vorticity of the flow field. Initial inputs are given for the grid size and

number of grids cells spanning the domain. For the Re = 10, 000 and St = 0.3 case,

the initial cell size was 0.008⇥0.008 in the x and y directions, respectively. Four levels

of mesh refinement were allowed for a minimum cell size of 0.001⇥ 0.001. Lastly, the

duration of the simulations were set so that five full cycles of plunging motion were

proceeded by two convective time steps of a stationary airfoil. The stationary airfoil

was important for establishing a boundary layer before motion began. Five plunging

cycles were selected as a compromise of providing multiple cycles for comparison to

identify a nominal steady state and to limit computational run time.

2.1.2 Airfoil Kinematics

The flat airfoil had a prescribed sinusoidal motion in the vertical direction,

referenced from the center of the plunging cycle. The displacement, velocity, and

acceleration are given by:

h = h0 sin(2⇡ft) (2.1)

ḣ = 2⇡fh0 cos(2⇡ft) (2.2)

ḧ = �(2⇡f)2h0 sin(2⇡ft) (2.3)

With the following independent variables: h0 as the motion amplitude in meters,

f as the motion frequency in Hertz, and t as the time in seconds. Note that, the

motion prescribed in Akkala [1] di↵ers by a factor of -1, where the plate motion moves

downward initially instead of upward as seen in the simulations. To compensate for
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the di↵erence, the simulation results were adjusted by shifting the associated phase

by �180�, resulting in the simulation data being presented in a consistent manner

with the experimental data.

2.1.3 Non-Dimensional Airfoil Kinematics

As stated previously, the simulations were executed in a non-dimensional form

and use the chord length and the free-stream velocity as the characteristic length and

characteristic velocity, respectively. Using these parameters the variables in Equations

2.1-2.3 can be transformed into non-dimensional form as follows:

h⇤
0 =

h0

c
(2.4)

f ⇤ =
fU1

c
(2.5)

t⇤ =
tc

U1
(2.6)

Note that the non-dimensional forms of the variable are designated with a superscript

*. Using Equations 2.4, 2.5, and 2.6, the equations of motion (Equations 2.1, 2.2,

and 2.3) can be transformed into the non-dimensional displacement, velocity, and

acceleration of the plate, as follows:

h⇤ =
h0

c
sin

✓
2⇡

fU1

c

tc

U1

◆
= h⇤

0 sin(2⇡f
⇤t⇤) (2.7)

ḣ⇤ = 2⇡
fc

U1

h0

c
cos

✓
2⇡

fU1

c

tc

U1

◆
= 2⇡f ⇤h⇤

0 cos(2⇡f
⇤t⇤) (2.8)

ḧ⇤ = �
✓
2⇡

fc

U1

◆2
h0

c
sin

✓
2⇡

fU1

c

tc

U1

◆
= �(2⇡f ⇤)2h⇤

0 sin(2⇡f
⇤t⇤) (2.9)



www.manaraa.com

14

Equations 2.7, 2.8, and 2.9 are used to characterize the airfoil’s plunging kinematics

during the simulations. As will be discussed in Section 2.2, these equations will be

used to update the airfoil level set for simulating the fluid-solid interaction.

2.1.4 Ramp Function

As stated in Section 2.1.3, the plunging motion was delayed two convective

time steps to allow for an adequate boundary layer to develop on the top and bottom

surfaces of the airfoil. Additionally, a ramp function was used to limit the plunging

amplitude during the first cycle of motion to avoid an impulsive start. The resulting

amplitude is given by:

h̄⇤
0 = h⇤

0

✓
1� exp

✓
�4.6

t99%
t⇤
◆◆

(2.10)

Equation 2.10 limits the amplitude (h⇤
0) of the sinusoidal motion in Equations 2.7,

2.8, and 2.9 and then continuously ramps up the output amplitude (h̄⇤
0). At t

⇤ = t99%,

h̄⇤
0 will be 99% of h⇤

0 and will continue to approach the asymptote h⇤
0 for t⇤ > t99%.

For the simulations conducted, t99% = P lungingPeriod

4 so that by the time the airfoil

reached the top of the periodic motion, the amplitude was at 99% of a normal cycle.

Therefore, the simulations implemented versions of Equations 2.7, 2.8, and 2.9 by

substituting h⇤
0 with h̄⇤

0 given in 2.10.

2.2 Numerical Implementation

The research code pELAFINT3D was used to perform the numerical simula-

tions [20, 18]. The code contains DNS compressible and incompressible flow solvers

for moving boundary problems. While the numerical methods implemented within
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pELAFINT3D are not the emphasis of this thesis, a brief overview of the numerical

methods implemented in pELAFINT3D are given in the following subsections.

2.2.1 Airfoil Boundary Treatment

The flow solver is based on the Cartesian grid method where the governing

equations are solved on a Cartesian mesh. For moving boundary problems, the Carte-

sian grid method inherently solves the governing equations from a Eulerian perspec-

tive as opposed to a Lagrangian perspective where the mesh would deform with the

motion of the object. Instead, the Cartesian grid method updates the position of the

object accordingly and then identifies di↵erent types of mesh nodes. Depending on

the type of node, the flow solver will appropriately solve, apply boundary conditions,

or ignore the nodes. At each timestep the node identification is updated based on the

object position.

The boundary of the object in pELAFINT3D is represented using the level set

method and solution nodes are identified based on the level set contours. The level

set is governed by the level set advection equation, Equation 2.11, where � is the

level set field and ~V is the propagation velocity of the level set field:

@�

@t
+ ~V ·r� = 0 (2.11)

Furthermore, the object’s surface is represented as the zeroth level set contour and the

sign convention used within pELAFINT3D has positive values representing contours

outside the object and negative values representing contours inside the object.

Extrapolation stencils used with the Ghost Fluid Method (GFM) identify fluid,
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hybrid, ghost, and fresh nodes at each timestep based on the level set field (Figure

2.3). Fluid nodes fill the domain away from the object boundary. Ghost nodes

are immediately inside the object’s surface and are used to impose the boundary

conditions at the object’s surface. Fresh nodes are nodes in a moving boundary

problem that have recently transitioned from being a ghost node inside the object to

becoming fluid nodes that need to be solved for. Therefore, fresh nodes are identified

by a transition from negative to positive level set values. Lastly, hybrid nodes are

close to the object’s surface and have a positive level set value. Special treatment is

applied to the hybrid nodes which represent a bu↵er between fluid and ghost nodes.

Hybrid nodes are determined by a predetermined distance threshold [17]. Once the

level set field and nodes have been updated, the fluid and hybrid nodes are solved

using a four-step fractional step algorithm. Because the fresh nodes are transitioning

from ghost nodes, they do not contain valid flow properties. To compensate for

this lack of data, interpolation from the surrounding fluid nodes is required and give

fresh nodes approximate values based on the previous timestep’s results. As fresh

nodes become hybrid nodes in the subsequent timesteps, the nodes are solved for

directly but fluctuations can occur in the node data close to the interface due to the

initial approximated results of the interpolation. This can ultimately lead to temporal

oscillations of the pressures and velocities and is a known numerical artifact of SIM

and GFM methods, as demonstrated by Luo 2012 [14]. Higher order interpolation

methods can help reduce the oscillations but any large amplitude motion at the

boundary will be di�cult to accurately approximate.
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Figure 2.3: The grid node classification of the pELAFINT3D sharp interface tech-

nique. Ghost and hybrid nodes are represented by filled and open square symbols

while fluid nodes are shown as open circles. The solid line represents the object’s

surface and the dashed line represents the threshold boundary for defining hybrid

nodes. Adopted from [18].

2.2.2 Non-Dimensional Governing Equations

The problem domain was setup in non-dimensional form using characteristic

parameters that resulted in a chord length and free stream velocity of unity. Nor-

malizing the length and velocity scales aid the numerical methods used by the flow

solver. Additionally, this enables the user to specify the desired Reynolds numbers

through the pseudo kinematic viscosity. Therefore, the incompressible Navier Stokes

Equations are solved in a non-dimensional form by the flow solver. Equations 2.12

and 2.13 are the non-dimensional versions of the incompressible governing equations:

r · ~u⇤ = 0 (2.12)

@ ~u⇤

@t
+ ~u⇤ ·r ~u⇤ = �rp⇤ +

1

Re
r2 ~u⇤ (2.13)
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Equations 2.12 and 2.13 are solved for by the flow solver at the fluid and hybrid

nodes. A four-step fractional step method is used by the solver to decouple the flow

velocity and pressure variables on a collocated cell-centered grid. Step one computes

a temporary velocity using a second-order explicit Adams-Bashforth scheme for the

time-discretization and a second-order semi-implicit Crank-Nicholson method for the

di↵usion term. At this step, the continuity equation is not explicitly enforced. Step

two eliminates an estimated pressure used in step one which can cause unstable results

due to the collocated grid. Steps three and four solve for the next timestep’s velocity

and pressure and impose the incompressiblity condition by solving a pressure Poisson

equation for a divergence-free flow.

Spatial discretization is achieved using second-order finite di↵erences. Fluid

boundary nodes use the appropriate forward or backward di↵erencing schemes and

non-boundary fluid and hybrid nodes use central di↵erencing. Ghost nodes are used

in the discretization to impose interface conditions and require special care. Extrap-

olation functions are used to probe the interface close to the node and then use a

weighted least-squares method of the surrounding nodes to establish an interpolated

value for the ghost node. Additional information on pELAFINT3D can be found in

the work of Mousel (2012) [20] and Mohaghegh (2017) [19].

2.2.3 Boundary Conditions

As with all numerical simulations, it was necessary to prescribe the boundary

conditions used in the solution process. Velocities at the boundaries of the domain
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were prescribed with Dirichlet conditions at the inlet, top, and bottom boundaries

which established a free-stream velocity of unity in the x-direction. The outlet had a

prescribed Neumann condition of zero velocity. Pressures along all domain boundaries

were prescribed with a Dirichlet condition of zero. As stated in Section 2.2.1, the

airfoil object had boundary conditions imposed at the zeroth level set contour using

the ghost nodes which resulted in the desired no-slip condition.

2.3 Flux Analysis

As detailed in Section 2.4, a quantitative vorticity flux analysis was performed

on a control region positioned along the top surface of the airfoil. Figure 2.4 displays

the 2D rectangular control region A
z

where boundaries s1, s2, and s3 extend into the

flow field while s4 is coincidental with the plate surface. The vorticity flux analysis

utilized by Eslam Panah et al. [22] was adapted for the simulation data. This flux

analysis was used to quantify the sources and sinks of vorticity on the the top surface

of the airfoil as it cycled through the plunging motion. A summary of the adaptation

of the vorticity flux analysis is given in Section 2.3.1.

2.3.1 Flux Analysis Adaptation

The three-dimensional form of the vorticity flux analysis from [22] is shown

below:

@�

@t
= �

Z

Az

u
z

@!
z

@z
dA

z

+

Z

Az

(!
x

@u
x

@x
+!

y

@u
z

@y
) dA

z

�
I

s

!
z

(~u·n̂) ds+1

⇢

Z

s4

@p

@x
ds4 (2.14)

The LHS is the time rate of change of circulation within the control region and should

be equal to the sum of the vorticity fluxes on the RHS. The first term on the RHS
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Figure 2.4: Control region for the vorticity flux analysis.

represents the span-wise convective flux along the z-direction. Tilting of vorticity into

the in-plane control region is represented by the second term on the RHS. Convection

of vorticity into the control region is represented by the third term on the RHS.

Because n̂ points outward from the control region boundary, a positive value for the

integral represents positive vorticity leaving the control region; therefore, a negative

sign is needed for the term to show positive vorticity entering the control region as

a positive value. Due to the no-flux condition at the airfoil’s surface, there is no

convective flux of vorticity through the s4 boundary. Instead, the last term on the

RHS represents the di↵usion of positive vorticity from the airfoil’s surface. The final

form of this term was derived to allow experimental pressure measurements along the

airfoil’s surface which were used to calculate the pressure gradient. Note that vorticity

di↵usion from boundaries s1, s2, and s3 have been neglected. This assumption has

been justified by the experimental data where Equation 2.14 has been shown to be

closed within the bounds of experimental error.



www.manaraa.com

21

For the simulation vorticity flux analysis, Equation 2.14 can be simplified due

to the absence of three-dimensional e↵ects. Derivation of the simulation vorticity flux

equation can be found in the Appendix, the final form is shown here:

@�
z

@t
= �

I

s

!
z

(~u · n̂) ds+ 1

⇢

Z

s4

@p

@x
ds4 (2.15)

Comparing Equations 2.14 and 2.15, it is apparent that the fluxes from spanwise

convection and out-of-plane tilting are absent in the simulation analysis. This is

consistent with the simulations’ lack of data in the z-direction which provide the

basis any three-dimensional vorticity transport mechanisms.

In summary, the terms of the two-dimensional vorticity flux analysis, Equation

2.15, are as follows. The LHS represents the time rate of change of circulation within

the control region. The first term on the RHS represents the convection of vorticity

through the control region boundaries s1, s2, and s3. The last term on the LHS

represents the di↵usion of vorticity along the airfoils surface. Taking the sum of

the convective and di↵usive fluxes of vorticity along the respective control region

boundaries, represents the total fluxes of vorticity for the two-dimensional simulations.

As stated previously, the LHS and RHS should be equal if all the vorticity fluxes are

properly accounted for.

The control region used for Equation 2.15 is defined in Figure 2.5, where the

left boundary (s1) is 0.021 non-dimensional units from the leading edge, the top

boundary (s2) is 0.459 non-dimensional units from the airfoil’s top surface, the right

boundary (s3) is 0.504 non-dimensional units from the leading edge, and the bottom

boundary (s4) coincides with the airfoil’s surface.
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Figure 2.5: Defined control region used for the vorticity flux analysis.

Numerical methods were implemented to compute the fluxes in Equation 2.15.

The spatial derivatives in the vorticity and di↵usive flux terms were calculated using

a second-order finite di↵erence scheme. To provide consistency with the experimental

analysis of [1], the simulation results were interpolated onto a uniform grid with a con-

sistent grid spacing. Central di↵erencing was then implemented on the interpolated

results. Discetization of the time derivative of circulation on the LHS of Equation

2.15 was also implemented using finite di↵erence. Circulation was calculated by sum-

ming the product of z-vorticity and cell area at each discrete node. The time-rate

of change in circulation was calculated as a second-order central di↵erence where the

circulation di↵erence at the previous and post timesteps were divided by twice the

output timestep size.
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2.4 Project Scope

The methods presented in this chapter were implemented with the goal of es-

tablishing a computational framework for investigating vortex dynamics of a plunging

airfoil. DNS simulations were used to study a simplified flat airfoil in a freestream that

was subject to pure plunging motion. Due to computational limitations in establishing

the framework, it was not feasible to simulate in three-dimensions and therefore the

results are limited to two-dimensions. Results were qualitatively and quantitatively

analyzed to determine the validity of the two-dimensional simulations by studying

the vorticity transport mechanisms. Validation of the simulations was conducted by

comparing the results to experimental data, identifying sources of numerical artifacts,

and analyzing the short-comings of excluding three-dimensional physics in the vortex

generation of a nominally two-dimensional flow. Once the two-dimensional computa-

tional framework was validated and characterized, a parametric study was conducted

to analysis the e↵ects of Reynolds number and Strouhal number on the formation of

a LEV.

Experimental measurements conducted by Akkala [1] were used in the valida-

tion of the simulation results. First, a comparison of the lift and drag forces was con-

ducted to validate that the aerodynamics forces were being reasonably captured in the

simulations. Once the forces were established, a qualitative analysis was conducted

to visually compare the LEV evolution and to develop a sense for the underlying

physics in the two-dimensional simulations. Lastly, the vorticity flux analysis used

by Akkala was adapted to the simulation data to characterize the two-dimensional
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vorticity transport mechanisms.
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CHAPTER 3
RESULTS AND ANALYSIS

3.1 Force Comparison

Validation of the simulations was first conducted by comparing the lift and

drag forces between the simulation and experimental data at Re = 10, 000 and St =

0.3. Akkala’s experimental data [1] implemented a six-axis force transducer at the end

of the plunging airfoil to record force data during the plunging cycles. The simulations

recorded aerodynamic forces on the airfoil by integrating the fluid pressure and viscous

stresses along the airfoil’s surface at each time step. Because the simulations were

non-dimensionalized, it was not possible to compare the simulation flow fields and

forces with the experiments directly. Therefore, the simulation force output and the

experimental transducer outputs were transformed into the non-dimensional lift and

drag coe�cients for comparison.

3.1.1 Filtering and Phase Averaging Simulation Data

The Ghost Fluid Method (GFM) described in Chapter 2 introduces high fre-

quency oscillations in the pressure and velocity solutions at the interface of a moving

boundary. Fortunately for the simulation data studied in this thesis, the fluctuating

airfoil forces could be accurately filtered before being compared to the experimental

data.

Filtering of the force data was achieved by applying a second-order Butter-

worth filter with a normalized cuto↵ frequency of 0.01. The cuto↵ frequency was
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normalized relative to half the sampling frequency of 18 Hz and resulted in a cuto↵

frequency of 0.9 Hz. This resulted in a reduction of the high frequency oscillations

introduced at the boundary but maintained the overall trend of the data. To avoid

any phase shift in the filtered results, the filtering was performed in the forward and

backward directions with the MATLAB function filtfilt. Figure 3.1 shows the raw

data for the simulation lift coe�cient in red and the filtered result in black.
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Figure 3.1: Filtered lift coe�cient data at Re = 10,000 and St = 0.3.

As can be seen by Figure 3.1, the filtering provided an adequate removal of the

high frequency fluctuations with no phase shift but retained cycle to cycle variations.

Upon inspection of the transient lift coe�cient, the lift appears to become irregular

as the simulation progressed. As will be discussed further, the irregular behavior is a
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significant deviation from the experimental data and provides insight into the impact

of the 2D assumption. Furthermore, because of the chaotic behavior of the vortices,

phase averaging is impractical, and only one plunging cycle was be considered for

validation purposes. The first cycle of plunging data without the e↵ects of the ramp

function (cycle 2) was be used because it does not contain the e↵ects of the ramp

function of cycle 1 and exhibits the least chaotic behavior in the vortices. Figure 3.2

shows a closeup of the raw and filtered coe�cient of lift data on cycle 2. Similarly,

the drag coe�cient was filtered to eliminate the oscillations as shown in Figure 3.3.
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Figure 3.2: Filtered lift coe�cient data during the second plunging cycle.
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Figure 3.3: Filtering of the simulation drag coe�cient.

3.1.2 Comparison of Non-Dimensional Forces

The lift coe�cient is defined as:

C
L

=
2F 0

y

⇢cU2
1

(3.1)

Where F 0
y

, ⇢, A, and U1 represent the lift force per unit span, density, chord length,

and free-stream velocity, respectively. The lift coe�cient was used to non-dimensionalize

the simulation and experimental lift forces for comparison.

Table 3.1 summarizes the parameters associated with the simulation and ex-

perimental data sets used in Equation 3.1.

The filtered forces were compared to the experimental measurements. Figure

3.4 shows the lift coe�cient of the simulation (solid line) and experiment (dashed line)

during the downstroke of the airfoil’s plunging motion. There is a strong similarity

between simulation and experimental lift coe�cient in both magnitude and phase,
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Table 3.1: Experimental and simulation parameters.

Parameter Experimental Simulation
Chord (c) [m] 76e-3 1
Span (S) [m] 3.048e-1 -
Area (A) [m2] 0.232 -
Density (⇢) [ kg

m

3 ] 1,000 1
Velocity (U1) [m

s

] 0.132 1
Frequency (f) [Hz] 0.865 0.5

Plunge Amplitude (h0) [m] 2.29e-2 0.3

suggesting that the 2D assumption does not e↵ect the lift generating mechanisms.

Similarly, the drag coe�cient was compared between the simulation and ex-

perimental data for validation. The drag coe�cient is defined as:

C
D

=
2F 0

x

⇢cU2
1

(3.2)

Figure 3.5 shows the drag coe�cient for the simulation and experimental data as

solid and dashed lines, respectively. Again, there is similarity between the two data

sets but in this case the simulation results do deviate from the experimental data

at the end of the downstroke. This may be the result of the physical di�culties in

accurately measuring drag on a flat plate, which has a much smaller magnitude force

when compared to the lift under these circumstances. But overall, there is excellent

agreement between the two data sets and again suggests that the 2D assumption does

not a↵ect the drag mechanisms.
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Figure 3.4: Lift coe�cient comparison between the experimental and simulation data,

at Re = 10, 000, St = 0.3, k = 1.57, and h0
c

= 0.3.

3.2 Vortex Evolution

Qualitative vortex evolution comparisons were made between the simulation

and experiment by overlaying the experimental vorticity results of Akkala [1] with

the simulation vorticity results at Re = 10, 000 and St = 0.3. Figure 3.6 displays

the formation of the LEV at every ten degrees of plate motion during the downstroke

where the saturated colored vorticity contours represent the simulation vortex dy-

namics and the outlined faint colored vorticity contours represent the experimental

vortices. In each case, blue contours represent negative vorticity and red contours

represent positive vorticity. The PIV measurements did not capture the flow below

the airfoil and the experimental vorticity contours are phase averaged over 100 cycles.

The simulation vorticity contours are representative of a single cycle (cycle 2) of the
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Figure 3.5: Drag coe�cient comparison between the experimental and simulation

data.

simulation results.

Focusing only on the development of the LEV, Figure 3.6 demonstrates that

the vortex growth and position correspond well between the simulation and experi-

mental results. At 0� the LEV has developed a significant region of secondary vorticity

along the plate surface which can be seen in both data sets. Between 50� and 70�

the LEV appears to separate, and both the simulation and experimental results show

the LEV being cuto↵ from the shear layer by the eruption of secondary vorticity [5].

Additionally, both data sets show that the negative vorticity of the LEV appears to

entrain some positive vorticity during these phases. Overall, qualitatively the LEV

evolution between the experimental data and simulation cycle 2 data are in good

agreement. As previously noted, the simulation vortices became increasingly chaotic



www.manaraa.com

32

(a) �90

�
(b) �80

�
(c) �70

�

(d) �60

�
(e) �50

�
(f) �40

�

(g) �30

�
(h) �20

�
(i) �10

�

Figure 3.6: Re=10,000 vortex evolution overlay of experimental and simulation data.
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Figure 3.6: Re=10,000 vortex evolution overlay of experimental and simulation data

with a vertical plunging motion and a freestream flow from left to right.
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with each additional plunging cycle so the agreement between experimental and simu-

lation LEV evolution diminishes with each cycle of the simulation. This suggests that

the 2D assumption begins to a↵ect the LEV formation after multiple plunging cycles

when the previous cycles’ LEVs have not seen significant breakdown or convected

downstream.

3.3 Vorticity Flux Analysis

A detailed quantitative analysis was conducted to characterize the sources and

sinks of vorticity in a moving control region on the top side of the plate using the

methods outlined in Chapter 2. The two-dimensional vorticity flux analysis isolates

the convective fluxes through each boundary of the control region defined in 2.1.1,

including the leading edge shear layer, the convective flux through the top of the

control region (s2), the convective flux through the downstream edge (s3), and the

di↵usive flux from the airfoil surface. For the Re=10,000 and St=0.3 simulation, s2

was placed significantly above the airfoil’s surface where it would be expected that

minimal convective flux would occur through this boundary. Furthermore, s3 was

located slightly past the mid point along the airfoil’s chord, for a LEV that does not

quickly detach and convect downstream it was expected that only small quantities of

vorticity would pass through this edge. Therefore, the dominant sources and sinks of

vorticity would be characterized by the shear layer and di↵usive fluxes.

Figure 3.7 displays the initial vorticity flux analysis of one downstroke cycle.

The vorticity flux analysis should show that the time rate of change of circulation
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equals the sum of the vorticity fluxes. In Figure 3.7, the summed vorticity fluxes

are shown in dark blue and the time rate of change of circulation is shown in black.

Overall, the trend of the fluxes are similar but there are oscillations in the summed

vorticity fluxes caused by the GFM. Looking at the two main sources and sinks of

vorticity, the di↵usive flux shown in light blue and shear layer flux shown in purple,

it can be seen that the di↵usive flux exhibits increasing oscillations around 0�. To

overcome these numerical artifacts, the di↵usive flux and shear layer flux were filtered

using forward and reverse second-order Butterworth MATLAB filter filtfilt, with a

normalized cuto↵ frequency of 0.01. Again, the cuto↵ frequency was normalized

relative to half the sampling frequencies. Because the flow data was recorded at

every ten degrees of the plate’s motion, the sampling frequency was much lower than

that of the force data which was recorded at every time step. The lower sampling

frequency resulted in filtering that does not as accurately capture the true nature

of the flux. Regardless, the filtering does provide an improvement and the resulting

filtered sum of the vorticity fluxes is in better agreement with the time rate of change

of circulation. For the remainder of this thesis, all vorticity flux analysis results will

be displayed as the filtered di↵usive, shear layer, and total fluxes only.

As previously stated, five cycles of plunging motion were simulated where the

first cycle contained a ramp function to avoid an impulsive start. The flux analysis was

performed on the last four cycles (cycles 2-5) but not cycle 1 to avoid analyzing any

e↵ects introduced by the ramp function. Figure 3.8 displays the vorticity flux analysis

for the last four cycles (cycles 2 through 5) during the cycles plunging downstroke.
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Figure 3.7: Vorticity flux analysis filtered and unfiltered data, at Re = 10, 000,

St = 0.3, k = 1.57, and h0
c

= 0.3.

It is apparent that not all cycles exhibited the same flux behavior. Cycles 2 and 3

show similar trends, where cycle 4 shows weakened di↵usive and shear layer fluxes,

and cycle 5 shows a spike in the shear layer flux around �30�.

The di↵erences seen in the vorticity flux analysis between plunging cycles can

be attributed to an increased chaotic behavior of the vortices as the flow evolves and

vortex interactions increase. While it was seen in Section 3.2 that the vortex evolution

of the LEV compared well between the phase averaged experimental data and cycle

2 of the simulation data, Figure 3.8d shows the deviation of LEV formation and the

e↵ects of chaotic vortex interactions. It is hypothesized that these increased vortex

interactions are are the result of the LEVs not su�ciently breaking down after their

formation. The lack of vortex breakdown could be attributed to the lack of vorticity
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Figure 3.8: Vorticity flux analysis for Re = 10,000 and St = 0.3.
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sinks in the absence of three-dimensional e↵ects. As presented in Chapter 1, promi-

nent three-dimensional e↵ects of a LEV have been observed in the form of axial flow

and vortex stretching. The two-dimensional simulations lack these mechanisms and it

is hypothesized that these mechanism are necessary for modeling vortex breakdown.

Figure 3.9 shows the phase-averaged experimental flux analysis performed by

Akkala and can be compared to Figure 3.8. It is seen that the simulation flux anal-

yses in Figures 3.8a and 3.8b are in good phase and magnitude agreement with the

respective fluxes in the experimental analysis of Figure 3.9. Therefore, the hypothesis

of three-dimensional mechanisms needed in the breakdown of vortices is consistent

with the results of the two-dimensional simulations. When there is an absence of

extraneous vortex interaction, the formation of an LEV correlates well with exper-

imental data. But the absence of vortex interaction during LEV formation is not

sustainable in a two-dimensional simulation and more frequent vortex interactions

occur and become increasingly complex with repeated plunging cycles. This hypoth-

esis is supported by the analyses of the forces and vortex evolution used for validation,

where cycle 2 of the simulation data correlated well with the experimental data but

additional cycles began to show deviations. In summary, this work indicates that the

LEV formation is not highly dependent upon three-dimensional mechanisms but that

the breakdown of the LEV, after separation, is dependent upon three-dimensional

mechanisms.
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Figure 3.9: Experimental vorticity flux analysis filtered. Adopted from Akkala [1].

3.4 Parametric Study

The discussion to this point has been specific to one simulation case, where

Re = 10, 000 and St = 0.3. As stated in Chapter 1, these parameters were speci-

fied for their significance to biological motion and for comparison with the available

experimental data. In this section, the results of simulations in a parametric study,

with varying Reynolds number and Strouhal number, are investigated through the

analyses of aerodynamic forces, LEV vortex evolution, and the fluxes of vorticity dur-

ing LEV formation. Table 3.2 summarizes the flow variables used in the parametric

study, where three Reynolds numbers and three Strouhal numbers were varied to

investigate the e↵ects they had on the flow dynamics.
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Table 3.2: Parametric study parameters.

Case St Re
c

U⇤
1 c⇤ h⇤

0 f ⇤

1 0.3 1,000 1.0 1.0 0.3 0.5
2 0.2 5,000 1.0 1.0 0.3 0.333
3 0.3 5,000 1.0 1.0 0.3 0.5
4 0.4 5,000 1.0 1.0 0.3 0.667
5 0.3 10,000 1.0 1.0 0.3 0.5

3.4.1 Parametric Study: Forces Comparison

To begin, lift and drag coe�cients were compared for the cases outlined in

Table 3.2. Similar methods to those in Section 3.1 were used to generate the filtered

data shown in Figure 3.10. Case 3, with a Re = 5, 000 and St = 0.3, is shown by

a dash-dot line and is presented as the median case for the parametric study. From

Figure 3.10, the varied Strouhal number cases are represented as dashed lines and the

varied Reynolds number cases are represented as solid lines. The figure shows that

varying the Strouhal number provides the greatest changes in lift generation. For the

three cases with a consistent Strouhal number but a varying Reynolds number, very

little variation was seen in the lift coe�cient. For the three varying Strouhal numbers,

there is a proportional relationship. The increasing lift coe�cient can be attributed

to the increased dynamic pressure at the higher Strouhal numbers. Similarly, Figure

3.11 shows the results of the parametric study on the drag coe�cient. Again, variation

in Strouhal number o↵er the greatest variation in drag, when compared to the e↵ects

of the Reynolds number. Peak thrust (represented as negative drag) was generated

at St = 0.4 and occurred early in the downstroke. Conversely, the peak drag was
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Figure 3.10: Coe�cient of lift comparison with varying Reynolds and Strouhal num-

bers.

observed at the beginning and end of the downstroke for the Re = 1, 000 and St = 0.3

case. In all the cases of the parametric study, peak drag was observed at the beginning

and end of the downstroke where the airfoil was stationary. Therefore, it is observed

that a LEV provides thrust despite the airfoil’s motion being perpendicular. The

e↵ects of varying the Reynolds number are minimal, similar magnitudes were seen

through the downstroke with a slightly negative phase shift observed with increasing

Reynolds numbers.
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Figure 3.11: Coe�cient of drag comparison with varying Reynolds and Strouhal

numbers.

3.4.2 Parametric Study: Vortex Evolution

As a qualitative comparison, the LEV evolution is compared for the varying

Reynolds numbers and Strouhal numbers in Figures 3.12 and 3.13, respectively. Each

of these figures contains sub-figures of vorticity contours at regular phase increments

of the plate’s downstroke. Figures 3.12 illustrates the e↵ects of Reynolds number

on the evolution of the boundary layer and LEV formation. As expected, increased

di↵usion of vorticity into the freestream is seen at low Reynolds numbers, whereas the

higher Reynolds number flows of 5,000 and 10,000 show sharp vortex edges. Overall,

the evolution of the LEV during the downstroke is not highly dependent on the
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Reynolds number, the location and size of the LEV is similar among all three varying

Reynolds numbers and would justify the similar force data seen in Figures 3.10 and

3.11.

Alternatively, the e↵ects of varying the Strouhal number are seen to have a

large impact on the development of the LEV. Figure 3.13 compares the vorticity fields

for St = 0.2, St = 0.3, and St = 0.4, for phases �90� to 90� during the downstroke.

At St = 0.2, the LEV develops at a similar rate to the St = 0.3 case; but at St = 0.4,

the LEV develops quickly during the downstroke and entrains significant vorticity

from the opposite side of the airfoil that has rolled around the leading edge. This

entrained vorticity is opposite-signed to the LEV and begins a chaotic interaction

with the LEV formation that results in an poorly defined vortex structure. Eslam

Panah and Buchholz [7] observed similar behavior in their experimental results, where

the LEV formation occurred earlier in the downstroke and also saw some LEVs being

ejected normal to the airfoil surface. Alternatively, as discussed previously, the LEV

at St = 0.3 has time to develop during the downstroke without interactions with

shed vortices. Therefore, Figure 3.13 demonstrates the significance of St = 0.3 for

a plunging airfoil and is consistent with prior studies which found that the optimal

propulsion of biological specimens was achieved in the following Strouhal ranges:

0.25 < St < 0.35 [30, 29].



www.manaraa.com

44

(a) �90

�
(b) �80

�

(c) �70

�
(d) �60

�

Figure 3.12: Cycle 2 phase synced vortex evolution at varying Reynolds numbers.
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Figure 3.12: Cycle 2 phase synced vortex evolution at varying Reynolds numbers.
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Figure 3.12: Cycle 2 phase synced vortex evolution at varying Reynolds numbers.



www.manaraa.com

47

(m) 30

�
(n) 40

�

(o) 50

�
(p) 60

�

Figure 3.12: Cycle 2 phase synced vortex evolution at varying Reynolds numbers.
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Figure 3.12: Cycle 2 phase synced vortex evolution at varying Reynolds numbers.
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Figure 3.13: Cycle 2 phase synced vortex evolution at varying Strouhal numbers.
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Figure 3.13: Cycle 2 phase synced vortex evolution at varying Strouhal numbers.



www.manaraa.com

51

(i) �10

�
(j) 0

�

(k) 10

�
(l) 20

�

Figure 3.13: Cycle 2 phase synced vortex evolution at varying Strouhal numbers.
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Figure 3.13: Cycle 2 phase synced vortex evolution at varying Strouhal numbers.
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Figure 3.13: Cycle 2 phase synced vortex evolution at varying Strouhal numbers.
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3.4.3 Parametric Study: Vorticity Flux Analysis

Detailed vorticity flux analyses were conducted on the simulations of the para-

metric study using methods similar to Section 3.3. Figures 3.14, 3.15, 3.16, and 3.17

correspond to cases 1, 2, 3, and 4 of Table 3.2, respectively. The vorticity flux anal-

ysis for case 5 can be found in Section 3.3, where the simulation flux analysis was

compared to the experimental data. Each figure shows the isolated vorticity fluxes

during the plunging downstrokes of cycles 2-5 and were used to characterize the flow

field and determine the validity of performing a two-dimensional simulation at thsse

parameters.

It was shown in Section 3.3, that the two-dimensional simulation results yielded

overall circulation and vorticity fluxes in good agreement with experimental results.

Additionally, it was concluded that the deviations from the experimental data in later

plunging cycles resulted from the lack of vortex breakdown which caused irregular

vortex interactions and fluxes of vorticity that altered the evolution of the LEV.

Figure 3.14 shows the analysis for case 1 with Re = 1, 000 and St = 0.3. All

four plunging cycles show similar trends when comparing the isolated fluxes. This

was not seen in the analysis of case 5, the highest Reynolds number looked at, Re =

10, 000. The similarity of the vorticity flux analysis can be attributed to the formation

of the LEVs occurring in the absence of lingering vortices. The vorticity fluxes show

similar trends between cases 1 and 5, where the strength of the di↵usive flux is

approximately half the shear layer flux and the fluxes through s2 and s4 are minimal.

Case 1 does show that the shear and di↵usive fluxes have a wider region of peak flux,
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the flux strength first builds during the initial 60� of the downstroke and then the next

60� exhibit peak flux before diminishing at the end of the downstroke. Case 5 showed

longer periods of increasing flux (60�-70�) and a narrower region of peak flux (5�-10�).

Additionally, when comparing the magnitudes of the total vorticity flux, case 1 is two

orders of magnitudes less than case 5. This decrease in the vorticity fluxes’ magnitudes

can be attributed to the following: 1.) a decrease in the dynamic pressure at the

airfoil’s surface as a result of the reduced Reynolds number and 2.) increased viscous

di↵usion of vorticity into the the surrounding fluid. Because all four cycles of case 1

exhibit similar vorticity fluxes, it is hypothesized that adequate breakdown of the shed

vortices has occurred. This would suggest that the mechanisms of vortex breakdown

at low Reynolds number are not dependent upon three-dimensional e↵ects. Therefore,

it is concluded that the two-dimensional simulation results of case 1 adequately model

the flow field and that three-dimensional e↵ects are not as important in governing

vortex evolution when viscous e↵ects dominate.

Figure 3.15 corresponds to case 2, with Re = 5, 000 and St = 0.2. Again,

all four plunging cycles show similar trends when comparing the isolated fluxes. For

case 2, the Reynolds number has increased the dynamic pressure at the airfoil’s sur-

face but viscous di↵usion has diminished. The combined e↵ects result in increased

magnitudes of the vorticity fluxes and total flux. As the di↵usion of vorticity has less

relevance at Re = 5, 000, the consistency of the plunging cycles must be accounted

for elsewhere. Instead, the decreased plunging frequency, associated with the smaller

Strouhal number, has resulted in increased significance of the freestream velocity to
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(a) Cycle 2 (b) Cycle 3

(c) Cycle 4 (d) Cycle 5

Figure 3.14: Vorticity flux analysis for Re = 1,000 and St = 0.3.
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convect the LEV downstream. This is evident during the downstroke where there

is a proportional increase in the vorticity flux through S4, resulting from the mostly

negative vorticity leaving the control region. Therefore, it is concluded that increased

convection in the freestream direction at low Strouhal numbers acts to adequately re-

move prior cycle vortices. The nominal two-dimensional simulation of case 2 will not

necessarily solve the breakdown of vortices but the formation of LEVs is una↵ected

due to the vortex convection downstream and accurately simulate the formation of

an LEV.

Figure 3.16 shows the flux analysis for case 3 with Re = 5, 000 and St = 0.3.

In case 3, the Reynolds number is that same as case 2 but the Strouhal number is

the same as case 1 and 5. Therefore, it is expected that the evolution of the LEV is

in phase agreement with cases 1 and 5 but that the convection due to the reduced

frequency, as seen in case 2, will be diminished in St = 0.3. Furthermore, at Re =

5, 000 the di↵usion of vorticity into the freestream, as seen in case 1, will be diminished

as well. The net results of these e↵ects is that the four plunging cycles begins to show

variations in the vorticity fluxes, and in the shear layer flux specifically. Significant

variations were also seen in case 5 for Re = 10, 000 and St = 0.3, where it was

concluded that the lack of three-dimensional e↵ects in the two-dimensional simulation

were inaccurately modeling the breakdown of the LEVs. It is reasonable to expect

that the results of case 3 and 5 would be similar but that any physical deficiencies

would be more prevalent at the higher Reynolds number where turbulent flow become

prominent and three-dimensional structure are prevalent. In conclusion, the initial
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(c) Cycle 4
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Figure 3.15: Vorticity flux analysis for Re = 5,000 and St = 0.2.
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Figure 3.16: Vorticity flux analysis for Re = 5,000 and St = 0.3.

cycles of plunging motion for all cases should accurately simulate LEV formation in

a two-dimensional simulation, but beyond that the lack of three-dimensional e↵ects

inaccurately model the vortex breakdown which a↵ects LEV formation.

Lastly, Figure 3.17 shows the vorticity flux analysis for case 4 with Re =

5, 000 and St = 0.4. Only one cycle of this case is needed to demonstrate that the

simulations are not providing insightful analysis. As was seen in Figure 3.13, the
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LEV formation coincides with significant amounts of opposite-signed vorticity being

sucked around the leading edge. The vorticity from the opposite side of the airfoil

is then entrained into the forming LEV. The net result is that the magnitudes of

the vorticity fluxes in case 4 are diminished when compared to case 5. Furthermore,

Figure 3.13 also shows that the LEV does not significantly convect downstream and

is actually seen moving upstream and upward in later plunging cycles (not shown).

As previously discussed in Section 3.4.2, this behavior is consistent with what was

seen by Eslam Panah and Buchholz [7]. The pathway of the LEV can partly be

attributed to the high Strouhal number where the plunging motion is the dominate

motion over the freestream velocity and thus the LEV convects downstream very

slowly. The additional directions of LEV trajectory in case 4, present the problem of

using a control region that is ill fitted for the flow dynamics. As the control region

was originally defined for case 5, it was determined that it was not suited for the

irregular flow field of case 4. Therefore, any conclusions from case 4 were di�cult to

make and it is only hypothesized that the increased vortex interactions would result

in additional three-dimensional structures that would not be correctly modeled with

two-dimensional simulations.
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Figure 3.17: Representative vorticity flux analysis for Re = 5,000 and St = 0.4.
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CHAPTER 4
CONCLUSIONS AND FUTURE WORK

4.1 Conclusions

This thesis developed a numerical framework for performing and analyzing

two-dimensional unsteady flow simulations with a plunging airfoil. Elimination of

the three-dimensional flow physics, through the use of two-dimensional simulations,

allowed the investigation into the e↵ects of three-dimensional flow physics by com-

paring the two-dimensional simulation to experimental results (inherent with three-

dimensional physics). Interestingly, it was found that the absence of three-dimensional

flow did not significantly alter global e↵ects (i.e. lift and drag coe�cients) on the air-

foil despite deviations seen in the vortex evolution and transport of vorticity.

The base simulation case, Re = 10, 000 and St = 0.3, was compared to experi-

mental data for validation. Through the validation it was found that the lift and drag

coe�cients corresponded well between the filtered simulation and experimental data.

The analysis of the simulation force data did present one of the shortcomings with the

Ghost Fluid Method (GFM), where high frequency oscillations in the solution vari-

ables were seen around the moving boundary due to ghost cells transforming to fluid

cells with no prior variable data. The oscillating force artifacts were easily compen-

sated for through the use filtering because data the output was at high sampling rate

(every iteration). For flow variables not output at each iteration, filtering was less ac-

curate. Overlays of experimental and simulation vorticity contours validated that the
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simulation could accurately model the LEV position and entrainment of secondary

vorticity. But, despite secondary vorticity being entrained into the primary vortex,

it is hypothesized that the lack of LEV breakdown in the simulations is in part due

to the entrained secondary vorticity’s inability to annihilate the primary vorticity.

Presumably, the lack of three-dimensional mixing limits the vorticity annihilation.

Lastly, the vorticity flux analysis provided insight into LEV formation for the base

simulation. As the simulation progressed, the shed LEVs introduced increasingly ir-

regular fluxes of vorticity that began to alter the formation of an LEV. Therefore,

three-dimensional physics play a key role in the break down the vortices and suggest

that the vorticity mixing and annihilation occur in the spanwise direction.

The parametric study provided insight into the e↵ects of Reynolds and Strouhal

numbers. It was seen that the Strouhal number has the greatest e↵ect on both the

lift and drag coe�cients. The Reynolds number provided a slight phase shifting of

the lift and drag forces, consistent with [9], but overall the magnitudes were simi-

lar. Utilizing both the vortex evolution and vorticity transport analyses, it was seen

that the Strouhal number had a profound e↵ect on the generation and interaction of

LEVs, and the results were consistent with [7]. It was found that the greatest fluxes

of vorticity were achieved at St = 0.3 and reinforced the significance of flapping mo-

tion in the following Strouhal ranges: 0.25 < St < 0.35. The vorticity flux analysis

provided insight into other flow mechanisms that o↵set the lack of three-dimensional

physics on LEV formation, such as viscous di↵usion in low Reynolds number cases

and increased freestream convection.
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4.2 Future Work

This thesis work has been in support of the vortex dynamics research con-

ducted by Professor Buchholz’s lab. Future work using simulations to study vortex dy-

namics has been shown to be feasible, even with the absence of three-dimensional flow.

To fully realize the potential of DNS simulations and model the three-dimensional

physics using the research code pELAFINT3D, it would require several hundred pro-

cessor cores and several weeks to obtain a solution; the two-dimensional simulation

at Re = 10, 000 and St = 0.3 required 64 processors to obtain a solution in ap-

proximately two weeks. It is recommended that future work be conducted using this

framework and be output at a frequency greater than 10� of airfoil motion during pe-

riods of key LEV formation; this will allow more accurate filtering of the solution data

at the moving boundary. Increased dimensions of the domain and a higher frequency

of outputting data will require several terabytes of storage space; the current two-

dimensional simulations required approximately 300 gigabytes each. Additionally, the

current serial flux analysis would require several days of processing using a single core.

Therefore, to reduce the flux analysis processing time, parallelization of the code or

integrating it into the pELAFINT3D libraries would reduce the computational analy-

sis cost. In the end, the logical next step is to simulate in a three-dimensional domain

and analyze the resulting flow field with greater fidelity than can be achieved with

PIV.
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APPENDIX
DERIVATIONS

This Appendix provides a detailed derivation of the equations used in the

methods of Chapter 2.

A.1 Vorticity Flux Analysis

The vorticity flux analysis is derived from the vorticity transport equation,

Equation A.1, where ⌫ is a constant:
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Because the simulations were conducted in a 2D domain, only the z-component

of the vorticity is relevant and Equation A.1 can expanded for !
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as follows:
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Additionally, several terms in Equation A.2 can be eliminated as three-dimensional

mechanisms are not present in the 2D flow. Namely, Equations A.3, A.4, A.5, A.6,

and A.7, contain derivatives with respect to z, the z-component of of velocity (u
z

),

or out of plane vorticity (!
x

and !
y

):
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Equation A.2 then becomes Equation A.8 but note that A.4 and A.7 have

been retained as they will be used to alter the form of the equation for analysis:
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At this point it is necessary to alter Equation A.8 from viewing the vorticity

in a di↵erential element to viewing vorticity in a control region at the top surface of

the plate. The control region was specified in Section 3 but for now will be defined

as the in-plane area, dA
z

, and is introduced in the integral form of Equation A.8 as

Equation A.9:
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The LHS of Equation A.9 can be adjusted as A.11 with the introduction of

the definition of circulation given in Equation A.10. Equation A.11 is the time rate

of change in circulation of the planar control region dA
z

:
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The first term on the RHS of Equation A.9 is the convective flux of vorticity

into the control region. Using the continuity equation for an incompressible flow,
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Equation A.4 can be changed as shown in Equation A.12. Then first term on the

RHS of Equation A.9 can be altered as shown in A.13:
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Applying the Product Rule and then Green’s Theorem to the RHS of Equation

A.13, the form can be altered as shown in Equations A.14a, A.14b, and A.14c:
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Where s is the boundary of the planar control region A
z

and n̂ is the boundary’s

planar normal which points outward from the control region. Equation A.14c can be

interpreted as the flux of vorticity leaving the control region.

Finally, the last term in Equation A.9, the di↵usion flux of vorticity within

the control region, can be expressed as the change of pressure along the surface of the

airfoil. To begin, the area integral is converted to a line integral as shown in Equation
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A.15a through A.15c:
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Physcially, Equation A.15c is accounting for the di↵usion flux of vorticity

around the closed edge (s) containing the control region A
z

. It can be assumed that

the mechanisms of vorticity di↵usion away from a surface are negligible [10, 3] and

therefore Equation A.15c becomes a line integral along the surface of the control

region:
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Being consistent with the vorticity flux analysis performed on the experimental

PIV data given by Akkala [1], the vorticity gradient in Equation A.16 is transformed

into the gradient of the pressure along the surface of the airfoil:
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This simplification is only possible because the control surface is along the flat por-

tion of the airfoil and because the airfoil undergoes plunging motion soley in the

y-direction.

Putting together all the changes, the final form of the flux analysis is given in

Equation A.18:
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